|
Rodríguez, A., Rodríguez, B., & Lucas, M. P. (2012). Trends in numbers of petrels attracted to artificial lights suggest population declines in Tenerife, Canary Islands. Ibis, 154(1), 167–172.
Abstract: The secretive breeding behaviour of petrels makes monitoring their breeding populations challenging. To assess population trends of Cory's Shearwater Calonectris diomedea, Bulwer's Petrel Bulweria bulwerii and Macaronesian Shearwater Puffinus baroli in Tenerife from 1990 to 2010, we used data from rescue campaigns that aim to reduce the mortality of fledgling petrels attracted to artificial lights as proxies for trends in breeding population size. Despite increases in human population size and light pollution, the number of rescued fledglings of Cory's Shearwater and Bulwer's Petrel increased and remained stable, respectively, whereas numbers of rescued Macaronesian Shearwaters sharply declined. In the absence of more accurate population estimates, these results suggest a worrying decline in the Macaronesian Shearwater's breeding population.
|
|
|
Thums, M., Whiting, S. D., Reisser, J., Pendoley, K. L., Pattiaratchi, C. B., Proietti, M., et al. (2016). Artificial light on water attracts turtle hatchlings during their near shore transit. R. Soc. open sci., 3(5), 160142.
Abstract: We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.
|
|
|
Troy, J. R., Holmes, N. D., & Green, M. C. (2011). Modeling artificial light viewed by fledgling seabirds. Ecosphere, 2(10), art109.
Abstract: Artificial light is increasing in coverage across the surface of our planet, impacting the behavioral ecology of many organisms. Attraction to sources of artificial light is a significant threat to certain fledgling shearwaters, petrels (Procellariidae), and storm-petrels (Hydrobatidae) on their first nocturnal flights to the sea. Disorientation by light can cause these birds to crash into vegetation or manmade structures, potentially resulting in death from physical injury, starvation, dehydration, predation by introduced predators, or collisions with vehicles. We developed a GIS-based method to model the intensity of artificial light that fledgling procellariids and hydrobatids could view en route to the ocean (to estimate the degree of threat that artificial light poses to these birds) and present two models for the island of Kauai as examples. These models are particularly relevant to the federally threatened Newell's Shearwater, or `A`o (Puffinus newelli), of which >30,000 fledglings have been collected in response to disorientation by lights on Kauai during the past 30 years. Our models suggest that there are few to no portions of Kauai from which young birds could fledge and not view light on their post-natal nocturnal flights, which is concerning given evidence of a Newell's Shearwater population decline. In future work using this technique, night light intensity layers could be altered to model the effects of modified coastal light conditions on known and potential procellariid and hydrobatid breeding locations. Furthermore, certain methods presented herein may be applicable to other seabirds and additional taxa in which attraction to anthropogenic light poses a serious threat, including migratory passerines and hatchling marine turtles. Components of this modeling approach could potentially be used to spatially estimate effects of other point-source threats to ecological systems, including sound and air pollution.
|
|
|
Troy, J. R., Holmes, N. D., Veech, J. A., & Green, M. C. (2013). Using observed seabird fallout records to infer patterns of attraction to artificial light. Endangered Species Research, 22(3), 225–234.
Abstract: Attraction of fledgling shearwaters, petrels, and storm-petrels to artificial light has been documented for decades on islands around the world and is considered a significant threat to many species. Although large numbers of downed birds have been observed after being disoriented by light, several important elements of this âfalloutâ phenomenon are unknown, including the locations along the path from nest to ocean at which attraction and/or disorientation occurs and whether fledglings can be attracted back to land after reaching the ocean in numbers large enough to contribute significantly to fallout. To investigate these questions, we compared observed Newellâs shearwater Puffinus newelli fallout records (from 1998 to 2009) on Kauai, USA, with expected numbers generated from several hypothetical models containing basic assumptions related to fledgling movement and attraction to light. Based on our results, the spatial pattern of observed fallout is consistent with the amount of light that fledglings may view along their first flights to and beyond the coastline. This suggests that even fledglings from dark regions of the island may not be safe because they may view light after reaching the ocean and still be susceptible to attraction. These findings support recent modeling efforts predicting that most birds fledging from Kauai are likely exposed to at least some anthropogenic light. As nocturnal use of light by humans is unlikely to be eliminated, research on the types of artificial light that are both useful to humans and safe for seabirds may be crucial for the conservation of these important marine animals.
|
|
|
Zhao, N., & Samson, E. L. (2012). Estimation of virtual water contained in international trade products using nighttime imagery. International Journal of Applied Earth Observation and Geoinformation, 18, 243–250.
Abstract: Freshwater that is consumed in the process of producing a commodity is called virtual water â it represents all water use contained in that commodity. In social systems, water resources can flow when commodities are traded from one region to another. Quantitative monitoring and assessing virtual water flow related to international trade products is an important issue to comprehensively understand the balance of global water resources. In this study we tested the potential of the Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime images in conjunction with the LandScan population dataset for estimation of virtual water contained in international trade products. Lit area (areal extent of night lights) and urban population were selected as proxies to estimate export virtual water (EVW), import virtual water (IVW), and traded virtual water (TVW) (summed EVW and IVW), respectively, on the national level. The results showed that IVW can be more accurately estimated than EVW regardless of lit area or urban population. Lit area is normally more appropriate for estimation of the virtual water of developed countries than those of developing countries, but urban population is more appropriate for estimation of the virtual water of developing countries than those of developed countries. Urban population is a better proxy than total population for estimations of virtual water. This study makes a negative finding in that there are relatively large underestimations for developed countries. Another negative finding is that neither lit area nor urban population can be used to estimate net import virtual water (NIVW).
|
|