|
Grenis, K., Tjossem, B., & Murphy, S. (2015). Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. J. of Insect Cons., 19(3), 559â566.
Abstract: As human populations continue to expand, many more species are affected by habitat fragmentation and urbanization. One of the most common themes in studies of fragmented habitats is finding higher rates of predation along habitat edges. However, field studies supporting this pattern are heavily influenced by avian literature and may not apply similarly to other organisms, such as invertebrates. Field studies of predation are typically performed during the day or do not distinguish between day and night; these studies therefore overlook daily fluctuations in predation and may miss important effects that occur solely at night, such as light pollution from streetlights. We tested whether predation of larval Lepidoptera differed between edge and core habitats and also whether predation along the habitat edge varied in response to light pollution from streetlights. We placed larvae in the core of suburban habitat patches and along the habitat edge, both under streetlights as well as between streetlights where it was dark. We found that predation rate increased in both edge and core habitats over the summer. Early season, we found daily fluctuations in predation dynamics with greater predation along the habitat edge than in the habitat core during the day, but not at night. Additionally, we found that streetlights did not affect predation rate along the habitat edge. Our results suggest that increased predation along habitat edges may be a diurnal effect.
|
|
|
Hauptfleisch, M., & Dalton, C. (2015). Arthropod phototaxis and its possible effect on bird strike risk at two Namibian airports. Appl. Ecol. & Environ. Res., 13(4), 957–965.
Abstract: Aircraft wildlife collisions are a global safety and financial problem for the aviation industry, with birds being the main concern. In Namibia, 97% of collisions at Namibiaâs two main airports are reported to be with insectivorous birds. Phototaxis was identified as a major attractant to insectivorous
birds, which feed on the arthropods attracted to airport apron and terminal lights. This study considered the effect of light as an attraction at the rurally situated Hosea Kutako International and urban Eros airports. It further investigated the attractiveness of light colour (or wavelength) on arthropod abundance, biomass and diversity. The study found that phototaxis was a significant factor at Hosea Kutako only, and that white light was the main attractant for arthropods, specifically for large moths (Order Lepidoptera),
while yellow and orange light attracted significantly less arthropods. The study indicates a high likelihood that the Hosea Kutako apron lights (white) are an important attractant for arthropods, and therefore indirectly insectivorous birds, which can be reduced by replacing them with orange or yellow filters.
|
|
|
Longcore, T., Aldern, H. L., Eggers, J. F., Flores, S., Franco, L., Hirshfield-Yamanishi, E., et al. (2015). Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods. Philos Trans R Soc Lond B Biol Sci, 370, 20140125.
Abstract: Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.
|
|
|
Mcmunn, M. S., Yang, L. H., Ansalmo, A., Bucknam, K., Claret, M., Clay, C., Cox, K., Dungey, D. D., Jones, A., & Kim, A. Y. (2019). Artificial Light Increases Local Predator Abundance, Predation Rates, and Herbivory. Environmental Entomology, 48(6), 1331–1339.
Abstract: Human activity is rapidly increasing the radiance and geographic extent of artificial light at night (ALAN) leading to alterations in the development, behavior, and physiological state of many organisms. A limited number of community-scale studies investigating the effects of ALAN have allowed for spatial aggregation through positive phototaxis, the commonly observed phenomenon of arthropod movement toward light. We performed an open field study (without restricted arthropod access) to determine the effects of ALAN on local arthropod community composition, plant traits, and local herbivory and predation rates. We found strong positive phototaxis in 10 orders of arthropods, with increased (159% higher) overall arthropod abundance under ALAN compared to unlit controls. The arthropod community under ALAN was more diverse and contained a higher proportion of predaceous arthropods (15% vs 8%). Predation of immobilized flies occurred 3.6 times faster under ALAN; this effect was not observed during the day. Contrary to expectations, we also observed a 6% increase in herbivory under ALAN. Our results highlight the importance of open experimental field studies in determining community-level effects of ALAN.
|
|