Asher, A., Shabtay, A., Brosh, A., Eitam, H., Agmon, R., Cohen-Zinder, M., et al. (2015). “Chrono-functional milk”: The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions. Chronobiol Int, 32(10), 1409–1416.
Abstract: Pineal melatonin (MLT) is produced at highest levels during the night, under dark conditions. We evaluated differences in MLT-concentration by comparing daytime versus night time milk samples, from two dairy farms with different night illumination conditions: (1) natural dark (Dark-Night); (2) short wavelength Artificial Light at Night (ALAN, Night-Illuminated). Samples were collected from 14 Israeli Holstein cows from each commercial dairy farm at 04:30 h (“Night-milk”) 12:30 h (“Day-milk”) and analyzed for MLT-concentration. In order to study the effects of night illumination conditions on cows circadian rhythms, Heart Rate (HR) daily rhythms were recorded. MLT-concentrations of Night-milk samples from the dark-night group were significantly (p < 0.001) higher than those of Night-illuminated conditions (30.70 +/- 1.79 and 17.81 +/- 0.33 pg/ml, respectively). Interestingly, night illumination conditions also affected melatonin concentrations at daytime where under Dark-Night conditions values are significantly (p < 0.001) higher than Night-Illuminated conditions, (5.36 +/- 0.33 and 3.30 +/- 0.18 pg/ml, respectively). There were no significant differences between the two treatments in the milk yield and milk composition except somatic cell count (SCC), which was significantly lower (p = 0.02) in the Dark-Night group compared with the Night-Illuminated group. Cows in both groups presented a significant (p < 0.01) HR daily rhythm, therefore we assume that in the night illuminated cows feeding and milking time are the “time keeper”, while in the Dark-night cows, HR rhythms were entrained by the light/dark cycle. The higher MLT-concentration in Dark-night cows with the lower SCC values calls upon farmers to avoid exposure of cows to ALAN. Therefore, under Dark-night conditions milk quality will improve by lowering SCC values where separation between night and day of such milk can produce chrono-functional milk, naturally rich with MLT.
|
Chang, A. - M., Aeschbacha, D., Duffy, J. F., & Czeislera, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS, 112(4), 1232â1237.
Abstract: In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelengthâenriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.
|
Cornean, R. E., Margescu, M., & Simionescu, B. (2015). Disruption of the Cyrcadian System and Obesity. Jurnalul Pediatrului, XVIII(Supplement 3), 38–42.
Abstract: Disruption of the cyrcadian system is a relatively new concept incriminated as being responsible for obesity, cardiovascular involvement, cognitive impairment, premature aging and last but not least, cancer. Because obesity is undoubtedly assimilated today to the medical conditions related to the disruption of the normal chronobiology, this paper presents the pivotal role of chronodisruption in the neuroendocrine control of appetite among these patients.
|
Dauchy, R. T., Dauchy, E. M., Tirrell, R. P., Hill, C. R., Davidson, L. K., Greene, M. W., et al. (2010). Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comparative Medicine, 60(5), 348–356.
Abstract: Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 μW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 μW/cm(2) light at night), or 3) constant bright light (123 μW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.
|
Dickerman, B., & Liu, J. (2012). Does current scientific evidence support a link between light at night and breast cancer among female night-shift nurses? Review of evidence and implications for occupational and environmental health nurses. Workplace Health Saf, 60(6), 273–81; quiz 282.
Abstract: Breast cancer is increasingly prevalent in industrialized regions of the world, and exposure to light at night (LAN) has been proposed as a potential risk factor. Epidemiological observations have documented an increased breast cancer risk among female night-shift workers, and strong experimental evidence for this relationship has also been found in rodent models. Indirect support for the LAN hypothesis comes from studies involving blind women, sleep duration, bedroom light levels, and community nighttime light levels. This article reviews the literature, discusses possible mechanisms of action, and provides recommendations for occupational health nursing research, practice, and education. Research is needed to further explore the relationship between exposure to LAN and breast cancer risk and elucidate the mechanisms underlying this relationship before interventions can be designed for prevention and mitigation of breast cancer.
|