Home | << 1 >> |
![]() |
Addison, D., & Stewart, B. (2015). Nighttime Lights Revisited: The Use of Nighttime Lights Data as a Proxy for Economic Variables. World Bank Group.
Abstract: The growing availability of free or inexpensive satellite imagery has inspired many researchers to investigate the use of earth observation data for monitoring economic activity around the world. One of the most popular earth observation data sets is the so-called nighttime lights from the Defense Meteorological Satellite Program. Researchers have found positive correlations between nighttime lights and several economic variables. These correlations are based on data measured in levels, with a cross-section of observations within a single time period across countries or other geographic units. The findings suggest that nighttime lights could be used as a proxy for some economic variables, especially in areas or times where data are weak or unavailable. Yet, logic suggests that nighttime lights cannot serve as a good proxy for monitoring the within-in country growth rates all of these variables. Examples examined this paper include constant price gross domestic product, nonagricultural gross domestic product, manufacturing value
added, and capital stocks, as well as electricity consumption, total population, and urban population. The study finds that the Defense Meteorological Satellite Program data are quite noisy and therefore the resulting growth elasticities of Defense Meteorological Satellite Program nighttime lights with respect to most of these socioeconomic variables are low, unstable over time, and generate little explanatory power. The one exception for which Defense Meteorological Satellite Program nighttime lights could serve as a proxy is electricity consumption, measured in 10-year intervals. It is hoped that improved data from the recently launched Suomi National Polar-Orbiting Partnership satellite will help expand or improve these outcomes. Testing this should be an important next step. |
Li, S., Cheng, L., Liu, X., Mao, J., Wu, J., & Li, M. (2019). City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data. Energy, 189, 116040.
Abstract: Accelerating urbanization has created tremendous pressure on the global environment and energy supply, making accurate estimates of energy use of great importance. Most current models for estimating electric power consumption (EPC) from nighttime light (NTL) imagery are oversimplified, ignoring influential social and economic factors. Here we propose first classifying cities by economic focus and then separately estimating each category’s EPC using NTL data. We tested this approach using statistical employment data for 198 Chinese cities, 2015 NTL data from the Visible Infrared Imaging Radiometer Suite (VIIRS), and annual electricity consumption statistics. We used cluster analysis of employment by sector to divide the cities into three types (industrial, service, and technology and education), then established a linear regression model for each city's NTL and EPC. Compared with the estimation results before city classification (R2: 0.785), the R2 of the separately modeled service cities and technology and education cities increased to 0.866 and 0.830, respectively. However, the results for industrial cities were less consistent due to their more complex energy consumption structure. In general, using classification before modeling helps reflect factors affecting the relationship between EPC and NTL, making the estimation process more reasonable and improving the accuracy of the results.
Keywords: Energy; Remote Sensing; China; electric power consumption; Night lights; Nighttime light; VIIRS-DNB
|
Lu, L., Weng, Q., Xie, Y., Guo, H., & Li, Q. (2019). An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery. Energy, 189, 116351.
Abstract: Industrialization and urbanization have led to a remarkable increase of electric power consumption (EPC) during the past decades. To assess the changing patterns of EPC at the global scale, this study utilized nighttime lights in conjunction with population and built-up datasets to map EPC at 1 km resolution. Firstly, the inter-calibrated nighttime light data were enhanced using the V4.0 Gridded Population Density data and the Global Human Settlement Layer. Secondly, linear models were calibrated to relate EPC to the enhanced nighttime light data; these models were then employed to estimate per-pixel EPC in 2000 and 2013. Finally, the spatiotemporal patterns of EPC between the periods were analyzed at the country, continental, and global scales. The evaluation of the EPC estimation shows a reasonable accuracy at the provincial scale with R2 of 0.8429. Over 30% of the human settlements in Asia, Europe, and North America showed apparent EPC growth. At the national scale, moderate and high EPC growth was observed in 45% of the built-up areas in East Asia. The spatial clustering patterns revealed that EPC decreased in Russia and the Western Europe. This study provides fresh insight into the spatial pattern and variations of global electric power consumption.
Keywords: Remote Sensing; Energy; electric power consumption; Night lights
|
Zhu, Y., Xu, D., Saleem, A., Ma, R., & Cheng, J. (2019). Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference. Energies, 12(16), 3154.
Abstract: Nighttime light data are often used to estimate some socioeconomic indicators, such as energy consumption, GDP, population, etc. However, whether there is a causal relationship between them needs further study. In this paper, we propose a causal-effect inference method to test whether nighttime light data are suitable for estimating socioeconomic indicators. Data on electric power consumption and nighttime light intensity in 77 countries were used for the empirical research. The main conclusions are as follows: First, nighttime light data are more appropriate for estimating electric power consumption in developing countries, such as China, India, and others. Second, more latent factors need to be added into the model when estimating the power consumption of developed countries using nighttime light data. Third, the light spillover effect is relatively strong, which is not suitable for estimating socioeconomic indicators in the contiguous regions between developed countries and developing countries, such as Spain, Turkey, and others. Finally, we suggest that more attention should be paid in the future to the intrinsic logical relationship between nighttime light data and socioeconomic indicators.
|