|
Dominoni, D. M., & Partecke, J. (2015). Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos Trans R Soc Lond B Biol Sci, 370, 20140118.
Abstract: Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radiotelemetry,to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.
|
|
|
Dominoni, D. M., Carmona-Wagner, E. O., Hofmann, M., Kranstauber, B., & Partecke, J. (2014). Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J Anim Ecol, 83(3), 681â692.
Abstract: Summary
The growing interest in the effects of light pollution on daily and seasonal cycles of animals has led to a boost of research in recent years. In birds, it has been hypothesized that artificial light at night can affect daily aspects of behaviour, but one caveat is the lack of knowledge about the light intensity that wild animals, such as birds, are exposed to during the night.
Organisms have naturally evolved daily rhythms to adapt to the 24-h cycle of day and night, thus, it is important to investigate the potential shifts in daily cycles due to global anthropogenic processes such as urbanization.
We captured adult male European blackbirds (Turdus merula) in one rural forest and two urban sites differing in the degree of anthropogenic disturbance. We tagged these birds with light loggers and simultaneously recorded changes in activity status (active/non-active) through an automated telemetry system. We first analysed the relationship between light at night, weather conditions and date with daily activity onset and end. We then compared activity, light at night exposure and noise levels between weekdays and weekends.
Onset of daily activity was significantly advanced in both urban sites compared to the rural population, while end of daily activity did not vary either among sites. Birds exposed to higher amounts of light in the late night showed earlier onset of activity in the morning, but light at night did not influence end of daily activity. Light exposure at night and onset/end of daily activity timing was not different between weekdays and weekends, but all noise variables were. A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening (relative to civil twilight) in the early breeding season than at later stages.
Our results point at artificial light at night as a major driver of change in timing of daily activity. Future research should focus on the costs and benefits of altered daily rhythmicity in birds thriving in urban areas.
|
|