|
Lerchl, A., Schindler, C., Eichhorn, K., Kley, F., & Erren, T. C. (2009). Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting. J Pineal Res, 47(2), 143–146.
Abstract: In 2007, the International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as being probably carcinogenic to humans (Group 2A). In this context, light exposure during the night plays a key role because it can suppress nocturnal melatonin levels when exposures exceed a certain threshold. Blue light around 464 nm is most effective in suppressing melatonin because of the spectral sensitivity of melanopsin, a recently discovered photopigment in retinal ganglion cells; the axons of these cells project to the suprachiasmatic nucleus, a circadian master clock in the brain. Due to advances in light technologies, normal tungsten light bulbs are being replaced by light-emitting diodes which produce quasi-monochromatic or white light. The objective of this study was to assess whether the light-melanopsin-melatonin axis might be affected in automobiles at night which employ the new generation diodes. To this end, we have tested in an experimental automobile setting whether indirect blue light (lambda(max) = 465 nm) at an intensity of 0.22 or 1.25 lx can suppress salivary melatonin levels in 12 male volunteers (age range 17-27 years) who served as their own controls. Daytime levels were low (2.7 +/- 0.5 pg/mL), and night-time levels without light exposure were high (14.5 +/- 1.1 pg/mL), as expected. Low-intensity light exposures had no significant effect on melatonin levels (0.22 lx: 17.2 +/- 2.8 pg/mL; P > 0.05; 1.25 lx: 12.6 +/- 2.0 pg/mL; P > 0.05). It is concluded that indirect blue light exposures in automobiles up to 1.25 lx do not cause unintentional chronodisruption via melatonin suppression.
|
|
|
Li, M. - D., Li, C. - M., & Wang, Z. (2012). The Role of Circadian Clocks in Metabolic Disease. Yale Journal of Biology and Medicine, 85(3), 387â401.
Abstract: The circadian clock is a highly conserved timing system, resonating physiological processes to 24-hour environmental cycles. Circadian misalignment is emerging as a risk factor of metabolic disease. The molecular clock resides in all metabolic tissues, the dysfunction of which is associated with perturbed energy metabolism. In this article, we will review current knowledge about molecular mechanisms of the circadian clock and the role of clocks in the physiology and pathophysiology of metabolic tissues.
|
|
|
Lockley, S. W., Brainard, G. C., & Czeisler, C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab, 88(9), 4502–4505.
Abstract: The endogenous circadian oscillator in mammals, situated in the suprachiasmatic nuclei, receives environmental photic input from specialized subsets of photoreceptive retinal ganglion cells. The human circadian pacemaker is exquisitely sensitive to ocular light exposure, even in some people who are otherwise totally blind. The magnitude of the resetting response to white light depends on the timing, intensity, duration, number and pattern of exposures. We report here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent. Exposure to 6.5 h of monochromatic light at 460 nm induces a two-fold greater circadian phase delay than 6.5 h of 555 nm monochromatic light of equal photon density. Similarly, 460 nm monochromatic light causes twice the amount of melatonin suppression compared to 555 nm monochromatic light, and is dependent on the duration of exposure in addition to wavelength. These studies demonstrate that the peak of sensitivity of the human circadian pacemaker to light is blue-shifted relative to the three-cone visual photopic system, the sensitivity of which peaks at approximately 555 nm. Thus photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.
|
|
|
Lowden, A., & Akerstedt, T. (2012). Assessment of a new dynamic light regimen in a nuclear power control room without windows on quickly rotating shiftworkers--effects on health, wakefulness, and circadian alignment: a pilot study. Chronobiol Int, 29(5), 641–649.
Abstract: The aim of the study was to test whether a new dynamic light regime would improve alertness, sleep, and adaptation to rotating shiftwork. The illumination level in a control room without windows at a nuclear power station was ~200 lux (straight-forward horizontal gaze) using a weak yellow light of 200 lux, 3000 K (Philips Master TLD 36 W 830). New lighting equipment was installed in one area of the control room above the positions of the reactor operators. The new lights were shielded from the control group by a distance of >6 m, and the other operators worked at desks turned away from the new light. The new lights were designed to give three different light exposures: (i) white/blue strong light of 745 lux, 6000 K; (ii) weak yellow light of 650 lux, 4000 K; and (iii) yellow moderate light of 700 lux, 4000 K. In a crossover design, the normal and new light exposures were given during a sequence of three night shifts, two free days, two morning shifts, and one afternoon shift (NNN + MMA), with 7 wks between sessions. The operators consisted of two groups; seven reactor operators from seven work teams were at one time exposed to the new equipment and 16 other operators were used as controls. The study was conducted during winter with reduced opportunities of daylight exposure during work, after night work, or before morning work. Operators wore actigraphs, filled in a sleep/wake diary, including ratings of sleepiness on the Karolinska Sleepiness Scale (KSS) every 2 h, and provided saliva samples for analysis of melatonin at work (every 2nd h during one night shift and first 3 h during one morning shift). Results from the wake/sleep diary showed the new light treatment increased alertness during the 2nd night shift (interaction group x light x time, p < .01). Time of waking was delayed in the light condition after the 3rd night shift (group x light, p < .05), but the amount of wake time during the sleep span increased after the 2nd night shift (p < .05), also showing a tendency to affect sleep efficiency (p < .10). Effects on circadian phase were difficult to establish given the small sample size and infrequent sampling of saliva melatonin. Nonetheless, it seems that appropriate dynamic light in rooms without windows during the dark Nordic season may promote alertness, sleep, and better adaptation to quickly rotating shiftwork.
|
|
|
Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., et al. (2014). Measuring and using light in the melanopsin age. Trends Neurosci, 37(1), 1–9.
Abstract: Light is a potent stimulus for regulating circadian, hormonal, and behavioral systems. In addition, light therapy is effective for certain affective disorders, sleep problems, and circadian rhythm disruption. These biological and behavioral effects of light are influenced by a distinct photoreceptor in the eye, melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to conventional rods and cones. We summarize the neurophysiology of this newly described sensory pathway and consider implications for the measurement, production, and application of light. A new light-measurement strategy taking account of the complex photoreceptive inputs to these non-visual responses is proposed for use by researchers, and simple suggestions for artificial/architectural lighting are provided for regulatory authorities, lighting manufacturers, designers, and engineers.
|
|