Bailey, L. A., Brigham, R. M., Bohn, S. J., Boyles, J. G., & Smit, B. (2019). An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection. Oecologia, 190(2), 367–374.
Abstract: Artificial lights may be altering interactions between bats and moth prey. According to the allotonic frequency hypothesis (AFH), eared moths are generally unavailable as prey for syntonic bats (i.e., bats that use echolocation frequencies between 20 and 50 kHz within the hearing range of eared moths) due to the moths' ability to detect syntonic bat echolocation. Syntonic bats therefore feed mainly on beetles, flies, true bugs, and non-eared moths. The AFH is expected to be violated around lights where eared moths are susceptible to exploitation by syntonic bats because moths' evasive strategies become less effective. The hypothesis has been tested to date almost exclusively in areas with permanent lighting, where the effects of lights on bat diets are confounded with other aspects of human habitat alteration. We undertook diet analysis in areas with short-term, localized artificial lighting to isolate the effects of artificial lighting and determine if syntonic and allotonic bats (i.e., bats that use echolocation frequencies outside the hearing range of eared moths) consumed more moths under conditions of artificial lights than in natural darkness. We found that syntonic bats increased their consumption of moth prey under experimentally lit conditions, likely owing to a reduction in the ability of eared moths to evade the bats. Eared moths may increase in diets of generalist syntonic bats foraging around artificial light sources, as opposed to allotonic species and syntonic species with a more specialized diet.
|
Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S., & Pocock, M. J. O. (2020). Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conservation and Diversity, , in press.
Abstract: The night‐time environment is increasingly being lit, often by broad‐spectrum lighting, and there is growing evidence that artificial light at night (ALAN) has consequences for ecosystems, potentially contributing to declines in insect populations.
Moths are species‐rich, sensitive to ALAN, and have undergone declines in Europe, making them the ideal group for investigating the impacts of light pollution on nocturnal insects more broadly. Here, we take a life cycle approach to review the impacts of ALAN on moths, drawing on a range of disciplines including ecology, physiology, and applied entomology.
We find evidence of diverse impacts across most life stages and key behaviours. Many studies have examined flight‐to‐light behaviour in adults and our meta‐analysis found that mercury vapour, metal halide, and compact fluorescent bulbs induce this more than LED and sodium lamps. However, we found that ALAN can also disrupt reproduction, larval development, and pupal diapause, with likely negative impacts on individual fitness, and that moths can be indirectly affected via hostplants and predators. These findings indicate that ALAN could also affect day‐flying insects through impacts on earlier life stages.
Overall, we found strong evidence for effects of artificial light on moth behaviour and physiology, but little rigorous, direct evidence that this scales up to impacts on populations. Crucially, there is a need to determine the potential contribution of ALAN to insect declines, relative to other drivers of change. In the meantime, we recommend precautionary strategies to mitigate possible negative effects of ALAN on insect populations.
|
Ford, S., Kidd, P., Nashand, K., & Rietveld, A. (2020). ARTIFICIAL LIGHT AND MOTH BIODIVERSITY: A COMPARISON OF MOTH DIVERSITY ACROSS DIFFERENT HABITATS ON LUNDY TO INVESTIGATE THE EFFECT OF ARTIFICIAL LIGHT. Journal of the Lundy Field Society, 7, 53–68.
Abstract: Moths perform important roles within ecosystems. Behavioural responses to artificial light disrupt adaptive behaviours, causing population declines. Island populations can assess moth population attracted to artificial light, distinct from urbanisation. Here we present results from day counts of moth larvae and nocturnal Skinner light-traps from Lundy. Findings reveal a significant difference between moth population dynamics and species at differing locations.Overall, numbers of individuals and species caught with the UV-light trap were significantly greater than LED sources.These findings can be applied to potential artificial light changes on Lundy, as well as further changes throughout the United Kingdom
|
Johnsen, S., Kelber, A., Warrant, E., Sweeney, A. M., Widder, E. A., Lee, R. L. J., et al. (2006). Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J Exp Biol, 209(Pt 5), 789–800.
Abstract: Recent studies have shown that certain nocturnal insect and vertebrate species have true color vision under nocturnal illumination. Thus, their vision is potentially affected by changes in the spectral quality of twilight and nocturnal illumination, due to the presence or absence of the moon, artificial light pollution and other factors. We investigated this in the following manner. First we measured the spectral irradiance (from 300 to 700 nm) during the day, sunset, twilight, full moon, new moon, and in the presence of high levels of light pollution. The spectra were then converted to both human-based chromaticities and to relative quantum catches for the nocturnal hawkmoth Deilephila elpenor, which has color vision. The reflectance spectra of various flowers and leaves and the red hindwings of D. elpenor were also converted to chromaticities and relative quantum catches. Finally, the achromatic and chromatic contrasts (with and without von Kries color constancy) of the flowers and hindwings against a leaf background were determined under the various lighting environments. The twilight and nocturnal illuminants were substantially different from each other, resulting in significantly different contrasts. The addition of von Kries color constancy significantly reduced the effect of changing illuminants on chromatic contrast, suggesting that, even in this light-limited environment, the ability of color vision to provide reliable signals under changing illuminants may offset the concurrent threefold decrease in sensitivity and spatial resolution. Given this, color vision may be more common in crepuscular and nocturnal species than previously considered.
|
Kelber, A., Balkenius, A., & Warrant, E. J. (2002). Scotopic colour vision in nocturnal hawkmoths. Nature, 419(6910), 922–925.
Abstract: Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.
|