|
Bielli, A., Alfaro-Shigueto, J., Doherty, P. D., Godley, B. J., Ortiz, C., Pasara, A., et al. (2019). An illuminating idea to reduce bycatch in the Peruvian small-scale gillnet fishery. Biological Conservation, in press, 108277.
Abstract: Found in the coastal waters of all continents, gillnets are the largest component of small-scale fisheries for many countries. Numerous studies show that these fisheries often have high bycatch rates of threatened marine species such as sea turtles, small cetaceans and seabirds, resulting in possible population declines of these non-target groups. However, few solutions to reduce gillnet bycatch have been developed. Recent bycatch reduction technologies (BRTs) use sensory cues to alert non-target species to the presence of fishing gear. In this study we deployed light emitting diodes (LEDs) – a visual cue – on the floatlines of paired gillnets (control vs illuminated net) during 864 fishing sets on small-scale vessels departing from three Peruvian ports between 2015 and 2018. Bycatch probability per set for sea turtles, cetaceans and seabirds as well as catch per unit effort (CPUE) of target species were analysed for illuminated and control nets using a generalised linear mixed-effects model (GLMM). For illuminated nets, bycatch probability per set was reduced by up to 74.4 % for sea turtles and 70.8 % for small cetaceans in comparison to non-illuminated, control nets. For seabirds, nominal BPUEs decreased by 84.0 % in the presence of LEDs. Target species CPUE was not negatively affected by the presence of LEDs. This study highlights the efficacy of net illumination as a multi-taxa BRT for small-scale gillnet fisheries in Peru. These results are promising given the global ubiquity of small-scale net fisheries, the relatively low cost of LEDs and the current lack of alternate solutions to bycatch.
|
|
|
Davies, T. W., Duffy, J. P., Bennie, J., & Gaston, K. J. (2014). The nature, extent, and ecological implications of marine light pollution. Frontiers in Ecology and the Environment, 12(6), 347–355.
Abstract: Despite centuries of use, artificial light at night has only recently been recognized as a cause for environmental concern. Its global extent and ongoing encroachment into naturally lit ecosystems has sparked scientific interest into the many ways in which it may negatively affect human health, societal attitudes, scientific endeavors, and biological processes. Yet, perhaps because sources of artificial light are largely land based, the potential for artificial light pollution to interfere with the biology of the ocean has not been explored in any detail. There is little information on how light pollution affects those species, behaviors, and interactions that are informed by the intensity, spectra, and periodicity of natural nighttime light in marine ecosystems. Here, we provide an overview of the extent of marine light pollution, discuss how it changes the physical environment, and explore its potential role in shaping marine ecosystems.
|
|
|
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O., & Levy, O. (2015). Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife, 4, e09991.
Abstract: Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.
|
|
|
Warrant, E. (2004). Vision in the dimmest habitats on earth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 190(10), 765–789.
Abstract: A very large proportion of the world's animal species are active in dim light, either under the cover of night or in the depths of the sea. The worlds they see can be dim and extended, with light reaching the eyes from all directions at once, or they can be composed of bright point sources, like the multitudes of stars seen in a clear night sky or the rare sparks of bioluminescence that are visible in the deep sea. The eye designs of nocturnal and deep-sea animals have evolved in response to these two very different types of habitats, being optimised for maximum sensitivity to extended scenes, or to point sources, or to both. After describing the many visual adaptations that have evolved across the animal kingdom for maximising sensitivity to extended and point-source scenes, I then use case studies from the recent literature to show how these adaptations have endowed nocturnal animals with excellent vision. Nocturnal animals can see colour and negotiate dimly illuminated obstacles during flight. They can also navigate using learned terrestrial landmarks, the constellations of stars or the dim pattern of polarised light formed around the moon. The conclusion from these studies is clear: nocturnal habitats are just as rich in visual details as diurnal habitats are, and nocturnal animals have evolved visual systems capable of exploiting them. The same is certainly true of deep-sea animals, as future research will no doubt reveal.
|
|