Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–14] |
![]() |
Fonken, L. K., Weil, Z. M., & Nelson, R. J. (2013). Dark nights reverse metabolic disruption caused by dim light at night. Obesity (Silver Spring), 21(6), 1159–1164.
Abstract: OBJECTIVE: The increasing prevalence of obesity and related metabolic disorders coincides with increasing exposure to light at night. Previous studies report that mice exposed to dim light at night (dLAN) develop symptoms of metabolic syndrome. This study investigated whether mice returned to dark nights after dLAN exposure recover metabolic function. DESIGN AND METHODS: Male Swiss-Webster mice were assigned to either: standard light-dark (LD) conditions for 8 weeks (LD/LD), dLAN for 8 weeks (dLAN/dLAN), LD for 4 weeks followed by 4 weeks of dLAN (LD/dLAN), and dLAN for 4 weeks followed by 4 weeks of LD (dLAN/LD). RESULTS: After 4 weeks in their respective lighting conditions both groups initially placed in dLAN increased body mass gain compared to LD mice. Half of the dLAN mice (dLAN/LD) were then transferred to LD and vice versa (LD/dLAN). Following the transfer dLAN/dLAN and LD/dLAN mice gained more weight than LD/LD and dLAN/LD mice. At the conclusion of the study dLAN/LD mice did not differ from LD/LD mice with respect to weight gain and had lower fat pad mass compared to dLAN/dLAN mice. Compared to all other groups dLAN/dLAN mice decreased glucose tolerance as indicated by an intraperitoneal glucose tolerance test at week 7, indicating that dLAN/LD mice recovered glucose metabolism. dLAN/dLAN mice also increased MAC1 mRNA expression in peripheral fat as compared to both LD/LD and dLAN/LD mice, suggesting peripheral inflammation is induced by dLAN, but not sustained after return to LD. CONCLUSION: These results suggest that re-exposure to dark nights ameliorates metabolic disruption caused by dLAN exposure.
|
Fonken, L. K., Workman, J. L., Walton, J. C., Weil, Z. M., Morris, J. S., Haim, A., et al. (2010). Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A, 107(43), 18664–18669.
Abstract: The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans.
Keywords: Animals; Body Mass Index; *Circadian Rhythm; Disease Models, Animal; Eating/*physiology/psychology/*radiation effects; Energy Intake; Feeding Behavior/physiology/psychology/radiation effects; Glucose Tolerance Test; Humans; Male; Metabolic Syndrome X/etiology; Mice; Motor Activity; Obesity/*etiology/pathology/physiopathology/psychology; *Photoperiod
|
Foster, R. G., & Roenneberg, T. (2008). Human responses to the geophysical daily, annual and lunar cycles. Curr Biol, 18(17), R784–R794.
Abstract: Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.
Keywords: Human Health; Biological Clocks; Birth Rate; Circadian Rhythm; Death; Female; Human Activities; Humans; Male; Moon; *Periodicity; Photoperiod; Seasons; Sexual Behavior; Sleep
|
Gaston, K. J., & Bennie, J. (2014). Demographic effects of artificial nighttime lighting on animal populations. In Environmental Reviews (Vol. 22, pp. 323–330). Canadian Science Publishing.
Abstract: Artificial lighting, especially but not exclusively through street lights, has transformed the nighttime environment in much of the world. Impacts have been identified across multiple levels of biological organization and process. The influences, however, on population dynamics, particularly through the combined effects on the key demographic rates (immigration, births, deaths, emigration) that determine where individual species occur and in what numbers, have not previously been well characterized. The majority of attention explicitly on demographic parameters to date has been placed on the attraction of organisms to lights, and thus effectively local immigration, the large numbers of individuals that can be involved, and then to some extent the mortality that can often result. Some of the most important influences of nighttime lighting, however, are likely more subtle and less immediately apparent to the human observer. Particularly significant are effects of nighttime lighting on demography that act through (i) circadian clocks and photoperiodism and thence on birth rates; (ii) time partitioning and thence on death rates; and (iii) immigration/emigration through constraining the movements of individuals amongst habitat networks, especially as a consequence of continuously lit linear features such as roads and footpaths. Good model organisms are required to enable the relative consequences of such effects to be effectively determined, and a wider consideration of the effects of artificial light at night is needed in demographic studies across a range of species.
|
Gerrish, G. A., Morin, J. G., Rivers, T. J., & Patrawala, Z. (2009). Darkness as an ecological resource: the role of light in partitioning the nocturnal niche. Oecologia, 160(3), 525–536.
Abstract: Nocturnal behaviors that vary as a function of light intensity, either from the setting sun or the moon, are typically labeled as circadian or circalunar. Both of these terms refer to endogenous time-dependent behaviors. In contrast, the nightly reproductive and feeding behaviors of Vargula annecohenae, a bioluminescent ostracod (Arthropoda: Crustacea) fluctuate in response to light intensity, an exogenous factor that is not strictly time-dependent. We measured adult and juvenile activity of V. annecohenae throughout lunar cycles in January/February and June 2003. Overnight and nightly measurements of foraging and reproductive behavior of adult V. annecohenae indicated that activity was greatest when a critical “dark threshold” was reached and that the dark threshold for adult V. annecohenae is met when less than a third of the moon is visible or at the intensity of light 2-3 min before the start of nautical twilight when no moon is illuminated. Juvenile V. annecohenae were also nocturnally active but demonstrated little or no response to lunar illumination, remaining active even during brightly moonlit periods. In addition to light level, water velocity also influenced the behaviors of V. annecohenae, with fewer juveniles and adults actively foraging on nights when water velocity was high (>25 cm/s). Our data demonstrate that the strongest environmental factor influencing adult feeding and reproductive behaviors of V. annecohenae is the availability of time when illumination is below the critical dark threshold. This dependence on darkness for successful growth and reproduction allows us to classify darkness as a resource, in the same way that the term has been applied to time, space and temperature.
|