|
Bennie, J., Davies, T. W., Cruse, D., & Gaston, K. J. (2016). Ecological effects of artificial light at night on wild plants. J Ecol, 104(3), 611–620.
Abstract: 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.
2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.
3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.
4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
|
|
|
Gaston, K. J., & Bennie, J. (2014). Demographic effects of artificial nighttime lighting on animal populations. In Environmental Reviews (Vol. 22, pp. 323–330). Canadian Science Publishing.
Abstract: Artificial lighting, especially but not exclusively through street lights, has transformed the nighttime environment in much of the world. Impacts have been identified across multiple levels of biological organization and process. The influences, however, on population dynamics, particularly through the combined effects on the key demographic rates (immigration, births, deaths, emigration) that determine where individual species occur and in what numbers, have not previously been well characterized. The majority of attention explicitly on demographic parameters to date has been placed on the attraction of organisms to lights, and thus effectively local immigration, the large numbers of individuals that can be involved, and then to some extent the mortality that can often result. Some of the most important influences of nighttime lighting, however, are likely more subtle and less immediately apparent to the human observer. Particularly significant are effects of nighttime lighting on demography that act through (i) circadian clocks and photoperiodism and thence on birth rates; (ii) time partitioning and thence on death rates; and (iii) immigration/emigration through constraining the movements of individuals amongst habitat networks, especially as a consequence of continuously lit linear features such as roads and footpaths. Good model organisms are required to enable the relative consequences of such effects to be effectively determined, and a wider consideration of the effects of artificial light at night is needed in demographic studies across a range of species.
|
|
|
Ikeno, T., Weil, Z. M., & Nelson, R. J. (2014). Dim light at night disrupts the short-day response in Siberian hamsters. Gen Comp Endocrinol, 197, 56–64.
Abstract: Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response.
|
|