|
Allema, A. B., Rossing, A. H., van der Werf, W., Heusinkveld, B. G., Bukovinszky, T., Steingröver, E., et al. (2012). Effect of light quality on movement of Pterostichus melanarius (Coleoptera: Carabidae). Journal of Applied Entomology, 136(10), 793â800.
Abstract: Behaviour of nocturnal insects is routinely observed under red light, but it is unclear how the behaviour under red light compares to behaviour in complete darkness, or under a source of white light. Here, we measure movement behaviour of the nocturnal carabid beetle Pterostichus melanarius Illiger (Coleoptera: Carabidae) using camera recording under a near-infrared (nir), red or white radiation source. Red light significantly reduced movement speed in females similar to the effect of white light and different from nir. Also movement activity and pause length were affected by radiation source, with a significant difference between nir and white light, and with intermediate values in red light. The results presented here indicate that P. melanarius has different movement behaviour under the three radiation sources and suggest that nir rather than red radiation is most appropriate for measuring behaviour in total darkness. However, in the field total darkness is rare both because of natural light sources such as the moon and stars but increasingly also because of ecological light pollution, and therefore red light may still be of use for observing ecologically and practically relevant natural night-time behaviour.
|
|
|
Bedrosian, T. A. (Ed.). (2013). Circadian Disruption by Light at Night: Implications for Mood. Ph.D. thesis, , .
Abstract: Life on Earth has adapted to a consistent 24-h solar cycle. Circadian rhythms in physiology and behavior remain synchronized to the environment using light as the most potent entraining cue. During the past century, however, the widespread adoption of electric light has led to `round-the-clockâ societies. Instead of aligning with the environment, individuals follow artificial and often erratic light cycles created by social and work schedules. In particular, exposure to artificial light at night (LAN), termed âlight pollutionâ, has become pervasive over the past 100 years. Virtually every individual living in the U.S. and Europe experiences this aberrant light exposure, and moreover about 20% of the population performs shift work. LAN may disrupt physiological timekeeping, leading to dysregulation of internal processes and misalignment between behavior and the environment. Recent evidence suggests that individuals exposed to excessive LAN, such as night shift workers, have increased risk for depressive disorders, but the biological mechanism remains unspecified. In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) project light information to (1) the suprachiasmatic nucleus (SCN) in the hypothalamus, regulating circadian rhythms, and (2) to limbic regions, putatively regulating mood. Thus, LAN has the potential to affect both circadian timekeeping and mood. In this dissertation, I present evidence from rodent studies supporting the novel hypothesis that night-time exposure to light disrupts circadian organization and contributes to depressed mood. First, I consider the physiological and behavioral consequences associated with unnatural exposure to LAN. The effects of LAN on circadian output are considered in terms of locomotor activity, the diurnal cortisol rhythm, and diurnal clock protein expression in the brain in Chapter 2. The influence of LAN on behavior and brain plasticity is discussed, with particular focus on depressive-like behavior (Chapter 3) and effects of SSRI treatment (Chapter 4). Effects of LAN on structural plasticity and gene expression in the brain are described, with emphasis on potential correlates of the depressive-like behavior observed under LAN in Chapter 5. Given the prevalence of LAN exposure and its importance, strategies for reversing the effects are offered. Specifically, eliminating LAN quickly reverses behavioral and physiological effects of exposure as described in Chapter 5. In Chapter 6 I report that administration of a pharmacological cytokine inhibitor prevents depressive-like behaviors in LAN, implicating brain inflammation in the behavioral effect. Finally, I demonstrate in Chapter 7 that exposure to red wavelength LAN reduces the effects on brain and behavior, suggesting that LAN acts through specific retinal pathways involving melanopsin. Taken together, these studies demonstrate the consequences of LAN, but also outline potential avenues for prevention or intervention.
|
|
|
Figueiro, M. G., & Rea, M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol, 2010, 829351.
Abstract: The primary purpose of the present study was to expand our understanding of the impact of light exposures on the endocrine and autonomic systems as measured by acute cortisol, alpha amylase, and melatonin responses. We utilized exposures from narrowband long-wavelength (red) and from narrow-band short-wavelength (blue) lights to more precisely understand the role of the suprachiasmatic nuclei (SCN) in these responses. In a within-subjects experimental design, twelve subjects periodically received one-hour corneal exposures of 40 lux from the blue or from the red lights while continuously awake for 27 hours. Results showed-that, as expected, only the blue light reduced nocturnal melatonin. In contrast, both blue and red lights affected cortisol levels and, although less clear, alpha amylase levels as well. The present data bring into question whether the nonvisual pathway mediating nocturnal melatonin suppression is the same as that mediating other responses to light exhibited by the endocrine and the autonomic nervous systems.
|
|
|
Figueiro, M. G., Bierman, A., Plitnick, B., & Rea, M. S. (2009). Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci, 10, 105.
Abstract: BACKGROUND: A variety of studies have demonstrated that retinal light exposure can increase alertness at night. It is now well accepted that the circadian system is maximally sensitive to short-wavelength (blue) light and is quite insensitive to long-wavelength (red) light. Retinal exposures to blue light at night have been recently shown to impact alertness, implicating participation by the circadian system. The present experiment was conducted to look at the impact of both blue and red light at two different levels on nocturnal alertness. Visually effective but moderate levels of red light are ineffective for stimulating the circadian system. If it were shown that a moderate level of red light impacts alertness, it would have had to occur via a pathway other than through the circadian system. METHODS: Fourteen subjects participated in a within-subject two-night study, where each participant was exposed to four experimental lighting conditions. Each night each subject was presented a high (40 lx at the cornea) and a low (10 lx at the cornea) diffuse light exposure condition of the same spectrum (blue, lambda(max) = 470 nm, or red, lambda(max) = 630 nm). The presentation order of the light levels was counterbalanced across sessions for a given subject; light spectra were counterbalanced across subjects within sessions. Prior to each lighting condition, subjects remained in the dark (< 1 lx at the cornea) for 60 minutes. Electroencephalogram (EEG) measurements, electrocardiogram (ECG), psychomotor vigilance tests (PVT), self-reports of sleepiness, and saliva samples for melatonin assays were collected at the end of each dark and light periods. RESULTS: Exposures to red and to blue light resulted in increased beta and reduced alpha power relative to preceding dark conditions. Exposures to high, but not low, levels of red and of blue light significantly increased heart rate relative to the dark condition. Performance and sleepiness ratings were not strongly affected by the lighting conditions. Only the higher level of blue light resulted in a reduction in melatonin levels relative to the other lighting conditions. CONCLUSION: These results support previous findings that alertness may be mediated by the circadian system, but it does not seem to be the only light-sensitive pathway that can affect alertness at night.
|
|
|
Figueiro, M. G., Sahin, L., Wood, B., & Plitnick, B. (2015). Light at Night and Measures of Alertness and Performance: Implications for Shift Workers. Biol Res Nurs, .
Abstract: Rotating-shift workers, particularly those working at night, are likely to experience sleepiness, decreased productivity, and impaired safety while on the job. Light at night has been shown to have acute alerting effects, reduce sleepiness, and improve performance. However, light at night can also suppress melatonin and induce circadian disruption, both of which have been linked to increased health risks. Previous studies have shown that long-wavelength (red) light exposure increases objective and subjective measures of alertness at night, without suppressing nocturnal melatonin. This study investigated whether exposure to red light at night would not only increase measures of alertness but also improve performance. It was hypothesized that exposure to both red (630 nm) and white (2,568 K) lights would improve performance but that only white light would significantly affect melatonin levels. Seventeen individuals participated in a 3-week, within-subjects, nighttime laboratory study. Compared to remaining in dim light, participants had significantly faster reaction times in the GO/NOGO test after exposure to both red light and white light. Compared to dim light exposure, power in the alpha and alpha-theta regions was significantly decreased after exposure to red light. Melatonin levels were significantly suppressed by white light only. Results show that not only can red light improve measures of alertness, but it can also improve certain types of performance at night without affecting melatonin levels. These findings could have significant practical applications for nurses; red light could help nurses working rotating shifts maintain nighttime alertness, without suppressing melatonin or changing their circadian phase.
|
|