Baker, B. J., & Richardson, J. M. L. (2006). The effect of artificial light on male breeding-season behaviour in green frogs,Rana clamitans melanota. Can. J. Zool., 84(10), 1528–1532.
Abstract: Artificial night lighting (or ecological light pollution) is only now gaining attention as a source of long-term effects on the ecology of both diurnal and nocturnal animals. The limited data available clearly indicate that artificial light can affect physiology and behaviour of animals, leading to ecological consequences at the population, community, and ecosystem levels. Aquatic ecosystems may be particularly vulnerable to such effects, and nocturnally breeding animals such as frogs may be especially affected. To address this potential, we quantify the effects of artificial light on calling and movement behaviour in a rural population of male green frogs (Rana clamitans melanota (Rafinesque, 1820)) during the breeding season. When exposed to artificial light, frogs produced fewer advertisement calls and moved more frequently than under ambient light conditions. Results clearly demonstrate that male green frog behaviour is affected by the presence of artificial light in a manner that has the potential to reduce recruitment rates and thus affect population dynamics.
|
Baker, G. C., & Dekker, R. W. R. J. (2000). Lunar synchrony in the reproduction of the Moluccan Megapode Megapodius wallacei. Ibis, 142(3), 382–388.
Abstract: The Moluccan Megapode Megapodius wallacei uses heat generated by the sun to incubate its eggs. It buries the eggs deep in the sand of sun-exposed beaches and open sandy areas on islands in the Moluccas, Indonesia. The eggs are laid at night and left to incubate for two to three months without parental care. We present evidence that the Moluccan Megapode exhibits lunar synchrony in the timing of egg-laying, its spatial distribution of egg burrows and in its behaviour at communal nesting grounds. More Moluccan Megapodes visit the nesting grounds on bright nights than during the new moon. Data collected on the spatial distribution and depth of egg burrows also exhibit lunar periodicity. On moonlit nights, the birds excavate burrows in communal groups and spend longer at the nesting ground digging deeper burrows. Lunaphilia and lunar periodicity of reproduction are rarely documented in birds. We discuss possible explanations for these behaviours in the Moluccan Megapode.
|
Bapary, M. A. J., Amin, M. N., Takeuchi, Y., & Takemura, A. (2011). The stimulatory effects of long wavelengths of light on the ovarian development in the tropical damselfish, Chrysiptera cyanea. Aquaculture, 314(1-4), 188–192.
|
Bruning, A., Hölker, F., Franke, S., Kleiner, W., & Kloas, W. (2015). Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. Sci Total Environ, 543(Pt A), 214–222.
Abstract: The distribution and intensity of artificial light at night, commonly referred to as light pollution, is consequently rising and progressively also ecological implications come to light. Low intensity light is known to suppress nocturnal melatonin production in several fish species. This study aims to examine the least suppressive light colour for melatonin excreted into the holding water and the influence of different light qualities and quantities in the night on gene expression of gonadotropins in fish. European perch (Perca fluviatilis) were exposed to light of different wavelengths during the night (blue, green, and red). Melatonin concentrations were measured from water samples every 3h during a 24h period. Gene expression of gonadotropins was measured in perch exposed to different light colours and was additionally examined for perch subjected to different intensities of white light (0lx, 1lx, 10lx, 100lx) during the night. All different light colours caused a significant drop of melatonin concentration; however, blue light was least suppressive. Gene expression of gonadotropins was not influenced by nocturnal light of different light colours, but in female perch gonadotropin expression was significantly reduced by white light already at the lowest level (1lx). We conclude that artificial light with shorter wavelengths at night is less effective in disturbing biological rhythms of perch than longer wavelengths, coinciding with the light situation in freshwater habitats inhabited by perch. Different light colours in the night showed no significant effect on gonadotropin expression, but white light in the night can disturb reproductive traits already at very low light intensities. These findings indicate that light pollution has not only the potential to disturb the melatonin cycle but also the reproductive rhythm and may therefore have implications on whole species communities.
|
Dominoni, D., Quetting, M., & Partecke, J. (2013). Artificial light at night advances avian reproductive physiology. Proc Biol Sci, 280(1756), 20123017.
Abstract: Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.
|