|
Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities. Remote Sensing of Environment, 124, 99–107.
Abstract: Urbanization process involving increased population size, spatially extended land cover and intensified economic activity plays a substantial role in anthropogenic environment changes. Remotely sensed nighttime lights datasets derived from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) provide a consistent measure for characterizing trends in urban sprawl over time (Sutton, 2003). The utility of DMSP/OLS imagery for monitoring dynamics in human settlement and economic activity at regional to global scales has been widely verified in previous studies through statistical correlations between nighttime light brightness and demographic and economic variables ( and ). The quantitative relationship between long-term nighttime light signals and urbanization variables, required for extensive application of DMSP/OLS data for estimating and projecting the trajectory of urban development, however, are not well addressed for individual cities at a local scale. We here present analysis results concerning quantitative responses of stable nighttime lights derived from time series of DMSP/OLS imagery to changes in urbanization variables during 1994â2009 for more than 200 prefectural-level cities and municipalities in China. To identify the best-fitting model for nighttime lights-based measurement of urbanization processes with different development patterns, we comparatively use three regression models: linear, power-law and exponential functions to quantify the long-term relationships between nighttime weighted light area and four urbanization variables: population, gross domestic product (GDP), built-up area and electric power consumption. Our results suggest that nighttime light brightness could be an explanatory indicator for estimating urbanization dynamics at the city level. Various quantitative relationships between urban nighttime lights and urbanization variables may indicate diverse responses of DMSP/OLS nighttime light signals to anthropogenic dynamics in urbanization process in terms of demographic and economic variables. At the city level, growth in weighted lit area may take either a linear, concave (exponential) or convex (power law) form responsive to expanding human population and economic activities during urbanization. Therefore, in practice, quantitative models for using DMSP/OLS data to estimate urbanization dynamics should vary with different patterns of urban development, particularly for cities experiencing rapid urban growth at a local scale.
|
|
|
Mazor, T., Levin, N., Possingham, H. P., Levy, Y., Rocchini, D., Richardson, A. J., et al. (2013). Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biological Conservation, 159, 63–72.
Abstract: Artificial night lights pose a major threat to multiple species. However, this threat is often disregarded in conservation management and action because it is difficult to quantify its effect. Increasing availability of high spatial-resolution satellite images may enable us to better incorporate this threat into future work, particularly in highly modified ecosystems such as the coastal zone. In this study we examine the potential of satellite night light imagery to predict the distribution of the endangered loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle nests in the eastern Mediterranean coastline. Using remote sensing tools and high resolution data derived from the SAC-C satellite and the International Space Station, we examined the relationship between the long term spatial patterns of sea turtle nests and the intensity of night lights along Israelâs entire Mediterranean coastline. We found that sea turtles nests are negatively related to night light intensity and are concentrated in darker sections along the coast. Our resulting GLMs showed that night lights were a significant factor for explaining the distribution of sea turtle nests. Other significant variables included: cliff presence, human population density and infrastructure. This study is one of the first to show that night lights estimated with satellite-based imagery can be used to help explain sea turtle nesting activity at a detailed resolution over large areas. This approach can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of conservation action is required.
|
|
|
Miller, S., Straka, W., Mills, S., Elvidge, C., Lee, T., Solbrig, J., et al. (2013). Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sensing, 5(12), 6717–6766.
Abstract: Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always availableâexpanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.
|
|
|
Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., & Hawkins, J. D. (2012). Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc Natl Acad Sci U S A, 109(39), 15706–15711.
Abstract: Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights.
|
|
|
Propastin, P., & Kappas, M. (2012). Assessing Satellite-Observed Nighttime Lights for Monitoring Socioeconomic Parameters in the Republic of Kazakhstan. GIScience & Remote Sensing, 49(4), 538–557.
Abstract: This paper describes an initial assessment of human-induced nighttime lights acquired by the Defence Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) with respect to its applicability in monitoring settlement patterns, population, electricity consumption, gross domestic product (GDP), and carbon dioxide emissions at different spatial levels in the Republic of Kazakhstan. The results revealed the suitability of DMSP-OLS data to detect both urban expansion and contraction over last two decades caused by the new economic situation following the independence of Kazakhstan in 1991. Relationships between DMSP-OLS urban lit area and the socioeconomic parameters were quantified. The DMSP-OLS data proved to be an effective tool in the monitoring of both the spatial and temporal variability of the examined socioeconomic parameters.
|
|