Home | << 1 2 3 4 5 >> |
![]() |
Anbalagan, M., Dauchy, R., Xiang, S., Robling, A., Blask, D., Rowan, B., et al. (2019). SAT-337 Disruption Of The Circadian Melatonin Signal By Dim Light At Night Promotes Bone-lytic Breast Cancer Metastases. Journal of the Endocrine Society, 3(Supplement_1).
Abstract: Breast cancer metastasis to bone is a major source of morbidity and mortality in women with advanced metastatic breast cancer. Morbidity from metastasis to bone is compounded by the fact that they cannot be surgically removed and can only be treated with chemotherapy and/or radiation therapy. Thus, there is critical need to develop new treatment strategies that kill bone metastatic tumors and reduce osteolytic lesions to improve patient quality of life and extend patient survival. Circadian rhythms are daily cycles of ~24 h that control many if not most physiologic processes and their disruption by exposure to light at night (LAN) or jet lag has been shown to be strongly associated with the development of cancer, particularly breast cancer. We have found that disruption of the anti-cancer circadian hormone melatonin (MLT) by light at night can significantly enhance the metastatic potential in breast cancer cells. Our work supports the report of the International Agency for Research on Cancer that shift work is a “probable human carcinogen” and highlights the association between exposure to light at night and invasive breast cancer. We recently reported that human breast tumor xenografts grown in athymic nude female rats housed in a photoperiod of 12h light at day: 12h dim light at night (dLAN, 0.2 lux – blocks the nighttime circadian MLT signal), display resistance to doxorubicin (Dox). More importantly, tumor growth and drug resistance could be blocked by the administration of Dox in circadian alignment with nocturnal MLT during dLAN. Our recent preliminary studies show that poorly invasive ERα positive MCF-7 breast cancer cells, when injected into the tibia (to mimic bone metastatic disease) of Foxn1nu athymic nude mice (which produce a strong circadian nighttime melatonin signal) housed in a dLAN photoperiod (suppressed nocturnal MLT production) developed full blown breast cancer tumors in bone (P<0.05) that are highly osteolytic (P<0.05). Moreover, patients with metastatic breast cancer are routinely treated with doxorubicin, which itself can promote bone damage. Our studies demonstrate that MLT slows the growth of metastatic breast cancer in bone but that the chrono-therapeutic use of doxorubicin in circadian alignment with melatonin in Foxn1nu mice with tibial breast tumors, reduced tumor growth in bone, reduced bone erosion, and promoted the formation of new bone. Successful use of this chronotherapeutic use of Dox and MLT in clinical trials increasing efficacy in preventing or suppressing breast cancer metastasis to bone while decreasing toxic side effects of doxorubicin would provide a revolutionary advancement in the treatment of bone metastatic breast cancer and decrease the morbidity and mortality associated with breast cancer metastasis to bone.
Keywords: Human Health; Cancer; Breast cancer; melatonin; shift work; mouse models
|
Boyce, P. R. (2010). Review: The Impact of Light in Buildings on Human Health. Indoor and Built Environment, 19(1), 8–20.
Abstract: The effects of light on health can be divided into three sections. The first is that of light as radiation. Exposure to the ultraviolet, visible, and infrared radiation produced by light sources can damage both the eye and skin, through both thermal and photochemical mechanisms. Such damage is rare for indoor lighting installations designed for vision but can occur in some situations. The second is light operating through the visual system. Lighting enables us to see but lighting conditions that cause visual discomfort are likely to lead to eyestrain. Anyone who frequently experiences eyestrain is not enjoying the best of health. The lighting conditions that cause visual discomfort in buildings are well known and easily avoided. The third is light operating through the circadian system. This is known to influence sleep patterns and believed to be linked to the development of breast cancer among night shift workers. There is still much to learn about the impact of light on human health but what is known is enough to ensure that the topic requires the attention of all those concerned with the lighting of buildings.
Keywords: Human Health; indoor light; circadian disruption; shift work; oncogenesis; Review
|
Bray, M. S., & Young, M. E. (2012). Chronobiological Effects on Obesity. Curr Obes Rep, 1(1), 9–15.
Abstract: The development of obesity is the consequence of a multitude of complex interactions between both genetic and environmental factors. It has been suggested that the dramatic increase in the prevalence of obesity over the past 30 years has been the result of environmental changes that have enabled the full realization of genetic susceptibility present in the population. Among the many environmental alterations that have occurred in our recent history is the ever-increasing dyssynchrony between natural cycles of light/dark and altered patterns of sleep/wake and eating behavior associated with our “24-hour” lifestyle. An extensive research literature has established clear links between increased risk for obesity and both sleep deprivation and shift work, and our understanding of the consequences of such dyssynchrony at the molecular level is beginning to emerge. Studies linking alterations in cellular circadian clocks to metabolic dysfunction point to the increasing importance of chronobiology in obesity etiology.
Keywords: Human Health; Chronobiological effects; Circadian; Gene; Molecular clock; Obesity; Rhythm; Shift work; Sleep; Transcription
|
Bray, M. S., & Young, M. E. (2012). Chronobiological Effects on Obesity. Curr Obes Rep, 1(1), 9–15.
Abstract: The development of obesity is the consequence of a multitude of complex interactions between both genetic and environmental factors. It has been suggested that the dramatic increase in the prevalence of obesity over the past 30 years has been the result of environmental changes that have enabled the full realization of genetic susceptibility present in the population. Among the many environmental alterations that have occurred in our recent history is the ever-increasing dyssynchrony between natural cycles of light/dark and altered patterns of sleep/wake and eating behavior associated with our “24-hour” lifestyle. An extensive research literature has established clear links between increased risk for obesity and both sleep deprivation and shift work, and our understanding of the consequences of such dyssynchrony at the molecular level is beginning to emerge. Studies linking alterations in cellular circadian clocks to metabolic dysfunction point to the increasing importance of chronobiology in obesity etiology.
Keywords: Human Health; Chronobiological effects; Circadian; Gene; Molecular clock; Obesity; Rhythm; Shift work; Sleep; Transcription
|
Cherrie, J. W. (2019). Shedding Light on the Association between Night Work and Breast Cancer. Ann Work Expo Health, 63(6), 608–611.
Abstract: Shift work that involves circadian disruption has been classified as probably carcinogenic to humans by the International Agency for Research on Cancer, although more recent epidemiological evidence is not consistent. Several mechanisms have been postulated to explain an association between night work and female breast cancer, but the most likely is suppression of the hormone melatonin by light exposure at night. Three articles recently published in this journal describe aspects of exposure to light during night work. These articles and other evidence suggest that nighttime light levels may not always be sufficient to affect melatonin production, which could in part explain the inconsistencies in the epidemiological data. There is need to improve the specificity and reliability of exposure assessments in future epidemiological studies of night shift workers.
Keywords: Commentary; Human Health; Cancer; Breast cancer; shift work
|