Cho, J. R., Joo, E. Y., Koo, D. L., & Hong, S. B. (2013). Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep Med, 14(12), 1422–1425.
Abstract: OBJECTIVES: Artificial lighting has been beneficial to society, but unnecessary light exposure at night may cause various health problems. We aimed to investigate how whole-night bedside light can affect sleep quality and brain activity. PATIENTS AND METHODS: Ten healthy sleepers underwent two polysomnography (PSG) sessions, one with the lights off and one with the lights on. PSG variables related to sleep quality were extracted and compared between lights-off and lights-on sleep. Spectral analysis was performed to rapid eye movement (REM) sleep and non-REM (NREM) sleep epochs to reveal any light-induced differences in background brain rhythms. RESULTS: Lights-on sleep was associated with increased stage 1 sleep (N1), decreased slow-wave sleep (SWS), and increased arousal index. Spectral analysis revealed that theta power (4-8Hz) during REM sleep and slow oscillation (0.5-1Hz), delta (1-4Hz), and spindle (10-16Hz) power during NREM sleep were decreased in lights-on sleep conditions. CONCLUSIONS: Sleeping with the light on not only causes shallow sleep and frequent arousals but also has a persistent effect on brain oscillations, especially those implicated in sleep depth and stability. Our study demonstrates additional hazardous effect of light pollution on health.
|
Choi, S. J., Park, H. R. & Joo, E. Y. (2019). Effects of Light on Daytime Sleep in 12 Hours Night Shift Workers: A Field Study. Korean Sleep Research Society, 16(1), 26–35.
Abstract: Objectives: Night shift workers suffer from sleep and daytime disturbances due to circadian misalignment. To investigate the role of environmental light in daytime sleep following 12 h-night shift work. Methods: we enrolled 12 h-shift female nurses working at one university-affiliated hospital (n=10, mean age 26.6 years, shift work duration 3.8 years). This is a cross-over study to compare sleep between under light exposure (30 lux) and in the dark (<5 lux) following 12 h-night duty. Two sessions of experiments were underwent and the interval between sessions was about a month. Psychomotor vigilance test (PVT) had performed on awakening from sleep at each session and sleep-wake pattern had been monitored by actigraphy throughout the study period. Daytime sleep was also compared with night sleep of age-and gender matched daytime workers (n=10). Results: Sleep parameters and PVT scores were not different between two light conditions. Activities during sleep seemed to be more abundant under 30 lux condition than in the dark, which was not significant. Compared to night sleep, daytime sleep of shift workers was different in terms of rapid eye movement (REM) sleep. Three shift workers showed sleep onset REM sleep and first REM sleep period was the longest during daytime sleep. Conclusions: Unexpectedly, daytime sleep of 12 h night shift workers was well-maintained regardless of light exposure. Early occurrence of REM sleep and shorter sleep latency during daytime sleep suggest that shift workers meet with misalignment of circadian rhythm as well as increased homeostatic sleep pressure drive.
|
Cornean, R. E., Margescu, M., & Simionescu, B. (2015). Disruption of the Cyrcadian System and Obesity. Jurnalul Pediatrului, XVIII(Supplement 3), 38–42.
Abstract: Disruption of the cyrcadian system is a relatively new concept incriminated as being responsible for obesity, cardiovascular involvement, cognitive impairment, premature aging and last but not least, cancer. Because obesity is undoubtedly assimilated today to the medical conditions related to the disruption of the normal chronobiology, this paper presents the pivotal role of chronodisruption in the neuroendocrine control of appetite among these patients.
|
Czeisler, C. A. (2013). Perspective: casting light on sleep deficiency. Nature, 497(7450), S13.
|
Czeisler, C. A., Shanahan, T. L., Klerman, E. B., Martens, H., Brotman, D. J., Emens, J. S., et al. (1995). Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med, 332(1), 6–11.
Abstract: BACKGROUND: Complete blindness generally results in the loss of synchronization of circadian rhythms to the 24-hour day and in recurrent insomnia. However, some blind patients maintain circadian entrainment. We undertook this study to determine whether some blind patients' eyes convey sufficient photic information to entrain the hypothalamic circadian pacemaker and suppress melatonin secretion, despite an apparently complete loss of visual function. METHODS: We evaluated the input of light to the circadian pacemaker by testing the ability of bright light to decrease plasma melatonin concentrations in 11 blind patients with no conscious perception of light and in 6 normal subjects. We also evaluated circadian entrainment over time in the blind patients. RESULTS: Plasma melatonin concentrations decreased during exposure to bright light in three sightless patients by an average (+/- SD) of 69 +/- 21 percent and in the normal subjects by an average of 66 +/- 15 percent. When two of these blind patients were tested with their eyes covered during exposure to light, plasma melatonin did not decrease. The three blind patients reported no difficulty sleeping and maintained apparent circadian entrainment to the 24-hour day. Plasma melatonin concentrations did not decrease during exposure to bright light in seven of the remaining blind patients; in the eighth, plasma melatonin was undetectable. These eight patients reported a history of insomnia, and in four the circadian temperature rhythm was not entrained to the 24-hour day. CONCLUSIONS: The visual subsystem that mediates light-induced suppression of melatonin secretion remains functionally intact in some sightless patients. The absence of photic input to the circadian system thus constitutes a distinct form of blindness, associated with periodic insomnia, that afflicts most but not all patients with no conscious perception of light.
|