|
Dominoni, D., Quetting, M., & Partecke, J. (2013). Artificial light at night advances avian reproductive physiology. Proc Biol Sci, 280(1756), 20123017.
Abstract: Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.
|
|
|
Dominoni, D., Smit, J. A. H., Visser, M. E., & Halfwerk, W. (2020). Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). Environ Pollut, 256, 113314.
Abstract: Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
|
|
|
Dominoni, D. M., Helm, B., Lehmann, M., Dowse, H. B., & Partecke, J. (2013). Clocks for the city: circadian differences between forest and city songbirds. Proc Biol Sci, 280(1763), 20130593.
Abstract: To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.
|
|
|
Kempenaers, B., Borgstrom, P., Loes, P., Schlicht, E., & Valcu, M. (2010). Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr Biol, 20(19), 1735–1739.
Abstract: Associated with a continued global increase in urbanization, anthropogenic light pollution is an important problem. However, our understanding of the ecological consequences of light pollution is limited. We investigated effects of artificial night lighting on dawn song in five common forest-breeding songbirds. In four species, males near street lights started singing significantly earlier at dawn than males elsewhere in the forest, and this effect was stronger in naturally earlier-singing species. We compared reproductive behavior of blue tits breeding in edge territories with and without street lights to that of blue tits breeding in central territories over a 7 year period. Under the influence of street lights, females started egg laying on average 1.5 days earlier. Males occupying edge territories with street lights were twice as successful in obtaining extra-pair mates than their close neighbors or than males occupying central forest territories. Artificial night lighting affected both age classes but had a stronger effect on yearling males. Our findings indicate that light pollution has substantial effects on the timing of reproductive behavior and on individual mating patterns. It may have important evolutionary consequences by changing the information embedded in previously reliable quality-indicator traits.
|
|
|
Miller, M. W. (2006). Apparent Effects of Light Pollution on Singing Behavior of American Robins. Condor, 108(1), 130.
Abstract: Astronomers consider light pollution to be a growing problem, however few studies have addressed potential effects of light pollution on wildlife. Sunlight is believed to initiate song in many bird species. If light initiates song, then light pollution may be influencing avian song behavior at a population level. This hypothesis predicts that birds breeding in areas with large amounts of artificial light will begin singing earlier in the day than birds in areas with little artificial light. Birds in highly illuminated areas might begin singing earlier than did birds in those same areas in previous years when artificial light levels were known to be, or were presumably, lower. Also, birds should begin singing earlier within a site on brightly lit nights. In 2002 and 2003 I documented initiation of morning song by breeding American Robins (Turdus migratorius) in areas with differing intensity of artificial nocturnal light. I compared my observations among sites and against historical studies. Robin populations in areas with large amounts of artificial light frequently began their morning chorus during true night. Chorus initiation time, relative to civil twilight, was positively correlated with amount of artificial light present during true night. Robin choruses in areas with little, or presumably little, artificial light have almost never begun during true night, instead appearing to track the onset of civil twilight. Proliferation of artificial nocturnal light may be strongly affecting singing behavior of American Robins at a population level.
|
|