Home | << 1 >> |
![]() |
Abay, K. A., & Amare, M. (2018). Night light intensity and women's body weight: Evidence from Nigeria. Econ Hum Biol, 31, 238–248.
Abstract: The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
Keywords: Remote Sensing; Human Health; Adolescent; Adult; Body Mass Index; *Body Weight; Cross-Sectional Studies; Female; Health Surveys; Humans; Lighting/*statistics & numerical data; Middle Aged; Nigeria/epidemiology; Obesity/epidemiology; Overweight/*epidemiology; Prevalence; *Urbanization; Young Adult; *Bmi; *Nigeria; *Night light; *Obesity; *Overweight; *Urbanization
|
Bijveld, M. M. C., van Genderen, M. M., Hoeben, F. P., Katzin, A. A., van Nispen, R. M. A., Riemslag, F. C. C., et al. (2013). Assessment of night vision problems in patients with congenital stationary night blindness. PLoS One, 8(5), e62927.
Abstract: Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.
Keywords: Vision; Adolescent; Adult; Case-Control Studies; Child; *Dark Adaptation; Electroretinography; Eye Diseases, Hereditary/*physiopathology; Female; Genetic Diseases, X-Linked/*physiopathology; Humans; Light; Male; Middle Aged; Myopia/*physiopathology; Night Blindness/*physiopathology; *Night Vision; *Pattern Recognition, Visual; Surveys and Questionnaires; *Visual Acuity; Visual Fields
|
Gabinet, N. M., & Portnov, B. A. (2021). Assessing the impacts of ALAN and noise proxies on sleep duration and quality: evidence from a nation-wide survey in Israel. Chronobiol Int, in press.
Abstract: Sleep is a reversible state that sustains physiological and psychological processes in humans. As well established, individual-level factors, such as stress, smoking, drugs, and caffeine intake, reduce sleep duration and quality. However, studies of the effect of environmental risk factors, such as artificial light at night (ALAN) and noise, on sleep have been infrequent. Using records obtained from the 2017 Social Survey of Israel and combined with ALAN satellite data and various proxies for traffic noise, the present study aimed to determine how the combination of ALAN and traffic noise impact sleep duration and quality in urban areas. The increase of road density at the place of residence reduces average sleep duration by ~4.5% (~18 min.) and increases the frequency of reported sleep difficulties by ~3.5%, all other factors held equal. Similarly, an increase in ALAN exposure reduces average sleep duration by ~3% (~12 min) and increases the frequency of reported sleep difficulties by ~11%. The study also reveals a significant interaction between the two environmental risk factors in question, with the adverse impact of ALAN on sleep quality especially pronounced in high noise exposure areas.
|
Lyytimäki, J., & Rinne, J. (2013). Voices for the darkness: online survey on public perceptions on light pollution as an environmental problem. Journal of Integrative Environmental Sciences, 10(2), 127–139.
Abstract: Light pollution is increasingly affecting ecosystems and human health. We present results from an online survey aimed to chart what aspects of lighting are considered harmful and how light pollution is perceived by the public. We focus on affluent societies by using Finland as an example of a northern industrialised country. The survey generated 2053 responses, particularly from well-educated urban persons living in residential areas and interested in astronomy or environmental issues. The results show that the lighting of residential areas and lighting serving traffic are considered the most common sources of light pollution while commercial lighting is perceived as the most annoying form of light use. Respondents commonly considered light pollution as a disturbance for outdoor recreation and relaxation. The results suggest that the ecological and health effects of light pollution emphasised by the research are poorly known by the people emphasising the aesthetic aspects. The results indicate relatively wide but passive acceptance for policy measures aimed at reducing light pollution.
|
Weishampel, Z. A., Cheng, W. - H., & Weishampel, J. F. (2016). Sea turtle nesting patterns in Florida vis-Ã -vis satellite-derived measures of artificial lighting. Remote Sens Ecol Conserv, 2(1), 59–72.
Abstract: Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01â0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1â100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.
|