|
Johnson, R. S., Zhang, J., Hyer, E. J., Miller, S. D., & Reid, J. S. (2013). Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band. Atmos. Meas. Tech., 6(5), 1245–1255.
Abstract: A great need exists for reliable nighttime aerosol products at high spatial and temporal resolution. In this concept demonstration study, using Visible/Infrared Imager/Radiometer Suite (VIIRS) Day/Night Band (DNB) observations on the Suomi National Polar-orbiting Partnership (NPP) satellite, a new method is proposed for retrieving nighttime aerosol optical depth (τ) using the contrast between regions with and without artificial surface lights. Evaluation of the retrieved τ values against daytime AERONET data from before and after the overpass of the VIIRS satellite over the Cape Verde, Grand Forks, and Alta Floresta AERONET stations yields a coefficient of determination (r2) of 0.71. This study suggests that the VIIRS DNB has the potential to provide useful nighttime aerosol detection and property retrievals.
|
|
|
McHardy, T. M., Zhang, J., Reid, J. S., Miller, S. D., Hyer, E. J., & Kuehn, R. E. (2015). An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band. Atmos. Meas. Tech. Discuss., 8(5), 5147–5178.
Abstract: Using Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method, dubbed the “variance method”, is developed for retrieving nighttime aerosol optical thickness (τ) values through the examination of the dispersion of radiance values above an artificial light source. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime τ using artificial light sources. Nighttime τ retrievals from the newly developed method are inter-compared with an interpolated value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column-integrated τ from one High Spectral Resolution Lidar (HSRL) site at Huntsville, AL during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. Sensitivity studies are performed to examine the effects of lunar illumination on VIIRS τ retrievals made via the variance method, revealing that lunar contamination may have a smaller impact than previously thought, however the small sample size of this study limits the conclusiveness thus far. VIIRS τ retrievals yield a coefficient of determination (r2) of 0.60 and a root-mean-squared-error (RMSE) of 0.18 when compared against straddling daytime-averaged AERONET τ values. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.
|
|
|
Solbrig, J. E., Miller, S. D., Zhang, J., Grasso, L., & Kliewer, A. (2020). Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters. Atmos. Meas. Tech., 13(1), 165–190.
Abstract: The detection and characterization of aerosols are inherently limited at night because the important information provided by visible spectrum observations is not available and infrared bands have limited sensitivity to aerosols. The VIIRS Day–Night Band (DNB) onboard the Suomi-NPP satellite is a first-of-its-kind calibrated sensor capable of collecting visible and near-infrared observations during both day and night. Multiple studies have suggested that anthropogenic light emissions such as those from cities and gas flares may be useable as light sources for the retrieval of atmospheric properties, including cloud and aerosol optical depth. However, their use in this capacity requires proper characterization of their intrinsic variation, which represents a source of retrieval uncertainty. In this study we use 18 months of cloud-cleared VIIRS data collected over five selected geographic domains to assess the stability of anthropogenic light emissions and their response to varied satellite and lunar geometries. Time series are developed for each location in each domain for DNB radiance, four infrared channels, and satellite and lunar geometric variables, and spatially resolved correlation coefficients are computed between DNB radiance and each of the other variables. This analysis finds that while many emissive light sources are too unstable to be used reliably for atmospheric retrievals, some sources exhibit a sufficient stability (relative standard deviation <20 %). Additionally, we find that while the radiance variability of surrounding surfaces (i.e., unpopulated land and ocean) is largely dependent on lunar geometry, the anthropogenic light sources are more strongly correlated with satellite viewing geometry. Understanding the spatially resolved relationships between DNB radiance and other parameters is a necessary first step towards characterizing anthropogenic light emissions and establishes a framework for a model to describe variability in a more general sense.
|
|
|
Zhang, J., Jaker, S. L., Reid, J. S., Miller, S. D., Solbrig, J., & Toth, T. D. (2019). Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band. Atmos. Meas. Tech., 12(6), 3209–3222.
Abstract: Using nighttime observations from Visible Infrared Imager Radiometer Suite (VIIRS) Day/Night band (DNB), the characteristics of artificial light sources are evaluated as functions of observation conditions, and incremental improvements are documented on nighttime aerosol retrievals using VIIRS DNB data on a regional scale. We find that the standard deviation of instantaneous radiance for a given artificial light source is strongly dependent upon the satellite viewing angle but is weakly dependent on lunar fraction and lunar angle. Retrieval of nighttime aerosol optical thickness (AOT) based on the novel use of these artificial light sources is demonstrated for three selected regions (United States, Middle East and India) during 2015. Reasonable agreement is found between nighttime AOTs from the VIIRS DNB and temporally adjacent daytime AOTs from the AErosol RObotic NETwork (AERONET) as well as from coincident nighttime AOT retrievals from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), indicating the potential of this method to begin filling critical gaps in diurnal AOT information at both regional and global scales. Issues related to cloud, snow and ice contamination during the winter season, as well as data loss due to the misclassification of thick aerosol plumes as clouds, must be addressed to make the algorithm operationally robust.
|
|