Giraudeau, M., Sepp, T., Ujvari, B., Ewald, P. W., & Thomas, F. (2018). Human activities might influence oncogenic processes in wild animal populations. Nat Ecol Evol, 2, 1065–1070.
Abstract: Based on the abundant studies available on humans showing clear associations between rapid environmental changes and the rate of neoplasia, we propose that human activities might increase cancer rate in wild populations through numerous processes. Most of the research on this topic has concentrated on wildlife cancer prevalence in environments that are heavily contaminated with anthropogenic chemicals. Here, we propose that human activities might also increase cancer rate in wild populations through additional processes including light pollution, accidental (for example, human waste) or intentional (for example, bird feeders) wildlife feeding (and the associated change of diet), or reduction of genetic diversity in human-impacted habitats. The human species can thus be defined as an oncogenic species, moderating the environment in the way that it causes cancer in other wild populations. As human impacts on wildlife are predicted to increase rather than decrease (for example, in the context of urbanization), acknowledging the possible links between human activity and cancer in wild populations is crucial.
|
Xue, X., Yu, Z., Zhu, S., Zheng, Q., Weston, M., Wang, K., et al. (2018). Delineating Urban Boundaries Using Landsat 8 Multispectral Data and VIIRS Nighttime Light Data. Remote Sensing, 10(5), 799.
Abstract: Administering an urban boundary (UB) is increasingly important for curbing disorderly urban land expansion. The traditionally manual digitalization is time-consuming, and it is difficult to connect UB in the urban fringe due to the fragmented urban pattern in daytime data. Nighttime light (NTL) data is a powerful tool used to map the urban extent, but both the blooming effect and the coarse spatial resolution make the urban product unable to meet the requirements of high-precision urban study. In this study, precise UB is extracted by a practical and effective method using NTL data and Landsat 8 data. Hangzhou, a megacity experiencing rapid urban sprawl, was selected to test the proposed method. Firstly, the rough UB was identified by the search mode of the concentric zones model (CZM) and the variance-based approach. Secondly, a buffer area was constructed to encompass the precise UB that is near the rough UB within a certain distance. Finally, the edge detection method was adopted to obtain the precise UB with a spatial resolution of 30 m. The experimental results show that a good performance was achieved and that it solved the largest disadvantage of the NTL data-blooming effect. The findings indicated that cities with a similar level of socio-economic status can be processed together when applied to larger-scale applications.
|
Linares, H., Masana, E., Ribas, S. J., Garcia - Gil, M., Figueras, F., & Aubé, M. (2018). Modelling the night sky brightness and light pollution sources of Montsec protected area. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 178–188.
Abstract: We proceeded to the modelling of the night sky brightness of Montsec area (north-east of Spain), an astronomical protected area certified as a Starlight Reserve. We have used the hyperspectral version of ILLUMINA, an artificial sky brightness model. Ground based measurements for Montsec and other areas of Catalonia 0015 ; 0016, including both photometric and spectroscopic data, has been used to fit and evaluate the input parameters of the model. In this first modelling attempt, Lleida, the biggest city in the area, has been considered as the unique source of light pollution. In 2014 there was an update of the lighting infrastructure in Lleida. A detailed comparison of the sky brightness before and after the change is shown in order to measure the effects that different kind of lamps can produce. This information could be used to plan for future updates and improvements of the lighting systems in the area.
|
Yao, Y., Chen, D., Chen, L., Wang, H., & Guan, Q. (2018). A time series of urban extent in China using DSMP/OLS nighttime light data. PLoS One, 13(5), e0198189.
Abstract: Urban extent data play an important role in urban management and urban studies, such as monitoring the process of urbanization and changes in the spatial configuration of urban areas. Traditional methods of extracting urban-extent information are primarily based on manual investigations and classifications using remote sensing images, and these methods have such problems as large costs in labor and time and low precision. This study proposes an improved, simplified and flexible method for extracting urban extents over multiple scales and the construction of spatiotemporal models using DMSP/OLS nighttime light (NTL) for practical situations. This method eliminates the regional temporal and spatial inconsistency of thresholding NTL in large-scale and multi-temporal scenes. Using this method, we have extracted the urban extents and calculated the corresponding areas on the county, municipal and provincial scales in China from 2000 to 2012. In addition, validation with the data of reference data shows that the overall accuracy (OA), Kappa and F1 Scores were 0.996, 0.793, and 0.782, respectively. We increased the spatial resolution of the urban extent to 500 m (approximately four times finer than the results of previous studies). Based on the urban extent dataset proposed above, we analyzed changes in urban extents over time and observed that urban sprawl has grown in all of the counties of China. We also identified three patterns of urban sprawl: Early Urban Growth, Constant Urban Growth and Recent Urban Growth. In addition, these trends of urban sprawl are consistent with the western, eastern and central cities of China, respectively, in terms of their spatial distribution, socioeconomic characteristics and historical background. Additionally, the urban extents display the spatial configurations of urban areas intuitively. The proposed urban extent dataset is available for download and can provide reference data and support for future studies of urbanization and urban planning.
|
Durrant, J., Botha, L. M., Green, M. P., & Jones, T. M. (2018). Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. J Exp Zool B Mol Dev Evol, 330(4), 225–233.
Abstract: A growing body of evidence exists to support a detrimental effect of the presence of artificial light at night (ALAN) on life-history and fitness traits. However, few studies simultaneously investigate multiple traits and the life stages at which changes manifest. We experimentally manipulated ALAN intensities, within those found in the natural environment, to explore the consequences for growth, survival, and reproductive success of the field cricket, Teleogryllus commodus. We reared crickets from egg to adult under a daily light-cycle consisting of 12 hr bright daylight (2,600 lx) followed by either 12 hr darkness (0 lx) or dim-light environments (1, 10, or 100 lx). We found egg hatch, adult survival, and reproductive measures were largely comparable for all treatments. However, juvenile development time (number of days from egg to adult) was on average 10 days (14%) longer and adults were also larger when crickets were exposed to any light at night (1, 10, or 100 lx). Our data demonstrate that chronic lifetime exposure to ALAN can modulate the timing of life-history events and may disrupt phenology to a similar extent as other abiotic factors.
|