|
Rodríguez Martín, A., Holmberg, R., Dann, P., & Chiaradia, A. (2018). Penguin colony attendance under artificial lights for ecotourism. J Exp Zool A Ecol Integr Physiol, 329(8-9), 457–464.
Abstract: Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat.
|
|
|
Azam, C., Le Viol, I., Bas, Y., Zissis, G., Vernet, A., Julien, J. - F., et al. (2018). Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity. Landscape and Urban Planning, 175, 123–135.
Abstract: Light pollution is a major threat to biodiversity worldwide. There is a crucial need to elaborate artificial lighting recommendations to mitigate its impact on wildlife. In the present study, we investigated how streetlight spatial position and light trespass impacted the use of ecological corridors by transiting bats in anthropogenic landscapes. Through a paired, in situ experiment, we estimated how streetlight distance of impact and vertical and horizontal illuminance influenced the transiting activity of 6 species and 2 genera of bats. We selected 27 pairs composed of 1 lit site and 1 control unlit site in areas practicing either part-night or full-night lighting. We recorded bat activity at 0, 10, 25, 50 and 100 m, and measured vertical and horizontal light illuminance at the 5 distance steps (range = 0.1–30.2 lx). While streetlight attraction effect was mostly limited to a 10 m radius for Pipistrellus sp. and Nyctalus sp., streetlight avoidance was detected at up to 25 and 50 m for Myotis sp. and Eptesicus serotinus, respectively. Streetlight effects on Myotis sp. and Nyctalus sp. remained after lamps were turned-off. Illuminance had a negative effect on Myotis sp. below 1 lx, a mixed effect on E. serotinus, and a positive effect on the other species, although a peak of activity was observed between 1 and 5 lx for P. pipistrellus and N. leisleri. We recommend separating streetlights from ecological corridors by at least 50 m and avoiding vertical light trespass beyond 0.1 lx to ensure their use by light-sensitive bats.
|
|
|
Hoffmann, J., Palme, R., & Eccard, J. A. (2018). Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ Pollut, 238, 844–851.
Abstract: Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions.
|
|
|
Linden, B., Huisman, J., & Rinkevich, B. (2018). Circatrigintan instead of lunar periodicity of larval release in a brooding coral species. Sci Rep, 8(1), 5668.
Abstract: Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.
|
|
|
Farnworth, B., Innes, J., Kelly, C., Littler, R., & Waas, J. R. (2018). Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta. Environ Pollut, 236, 82–90.
Abstract: Avoiding foraging under increased predation risk is a common anti-predator behaviour. Using artificial light to amplify predation risk at ecologically valuable sites has been proposed to deter introduced mice (Mus musculus) and ship rats (Rattus rattus) from degrading biodiversity in island ecosystems. However, light may adversely affect native species; in particular, little is known about invertebrate responses to altered lighting regimes. We investigated how endemic orthopterans responded to artificial light at Maungatautari Ecological Island (Waikato, New Zealand). We predicted that based on their nocturnal behaviour, ecology and evolutionary history, tree weta (Hemideina thoracica) and cave weta (Rhaphidophoridae) would reduce their activity under illumination. Experimental stations (n=15) experienced three evenings under each treatment (order randomised): (a) light (illuminated LED fixture), (b) dark (unilluminated LED fixture) and (c) baseline (no lighting fixture). Weta visitation rates were analysed from images captured on infra-red trail cameras set up at each station. Light significantly reduced the number of observations of cave (71.7% reduction) and tree weta (87.5% reduction). In observations where sex was distinguishable (53% of all visits), male tree weta were observed significantly more often (85% of visits) than females (15% of visits) and while males avoided illuminated sites, no detectable difference was observed across treatments for females. Sex could not be distinguished for cave weta. Our findings have implications for the use of light as a novel pest management strategy, and for the conservation of invertebrate diversity and abundance within natural and urban ecosystems worldwide that may be affected by light pollution.
|
|